
Communication Strategy (PARCC Activity 4.2) Ver. 1. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  

2015 

ENGLISH 

 

David J.Baker and 
Stephen G. Willis 

Durham University 

2015 

Protected Areas Resilient to Climate Change, 
PARCC West Africa 

Projected Impacts of Climate 
Change on Biodiversity in West 

African Protected Areas 



Durham University. SDM with dynamic climate. 

 

 

The United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) 
is the specialist biodiversity assessment centre of the United Nations Environment Programme 
(UNEP), the world’s foremost intergovernmental environmental organisation. The Centre has been in 
operation for over 30 years, combining scientific research with practical policy advice. 
 
 
 
 
 
Projected Impacts of Climate Change on Biodiversity in West African Protected Areas, prepared by 
David J. Baker and Stephen G. Willis, with funding from Global Environment Facility (GEF) via UNEP. 

 
Copyright: 2015. United Nations Environment Programme. 

 
Reproduction: This publication may be reproduced for educational or non-profit purposes 

without special permission, provided acknowledgement to the source is made. 
Reuse of any figures is subject to permission from the original rights holders.  No 
use of this publication may be made for resale or any other commercial purpose 
without permission in writing from UNEP. Applications for permission, with a 
statement of purpose and extent of reproduction, should be sent to the Director, 
DCPI, UNEP, P.O. Box 30552, Nairobi, Kenya. 

 
Disclaimer: The contents of this report do not necessarily reflect the views or policies of UNEP, 

contributory organisations or editors. The designations employed and the 
presentations of material in this report do not imply the expression of any opinion 
whatsoever on the part of UNEP or contributory organisations, editors or 
publishers concerning the legal status of any country, territory, city area or its 
authorities, or concerning the delimitation of its frontiers or boundaries or the 
designation of its name, frontiers or boundaries. The mention of a commercial 
entity or product in this publication does not imply endorsement by UNEP.  

 
Citation: David J. Baker and Stephen G. Willis. 2015. Projected Impacts of Climate Change 

on Biodiversity in West African Protected Areas. UNEP-WCMC technical report. 
  
Available from: UNEP World Conservation Monitoring Centre (UNEP-WCMC) 

219 Huntingdon Road, Cambridge CB3 0DL, UK 
Tel: +44 1223 277314; Fax: +44 1223 277136 
Email: protectedareas@unep-wcmc.org  
URL: http://www.unep-wcmc.org  
 

Photo cover: Roan Antelope, Reserve de Nazinga, Burkina Faso. Copyright: Stephen G. Willis. 
 

mailto:protectedareas@unep-wcmc.org
http://www.unep-wcmc.org/


Projected Impacts of Climate Change on Biodiversity in West African Protected Areas. FINAL Version. 

 

 

 

Table of Contents 

 

ACKNOWLEDGEMENTS .......................................................................................................................... 4 

EXECUTIVE SUMMARY ........................................................................................................................... 5 

1. INTRODUCTION ........................................................................................................................ 6 

2. METHODS ................................................................................................................................. 9 

3. RESULTS.................................................................................................................................. 15 

4. DISCUSSION ............................................................................................................................ 24 

5. REFERENCES ........................................................................................................................... 27 

ANNEX 1: EXCLUDED SPECIES .............................................................................................................. 35 

ANNEX 2: COUNTRY LEVEL SPECIES TURNOVER MAPS ....................................................................... 39 

ANNEX 3: CHANGE IN CLIMATE SUITABILITY ACROSS THE NETWORK FOR RED LISTED SPECIES ........ 58 

ANNEX 4: ‘HIGH PRIORITY’ SITES IDENTIFIED FOR TWO OR THREE TAXONOMIC GROUPS ................ 61 

 
  



Durham University. SDM with dynamic climate. 

 4 

Acknowledgements 

 
We would like to thank the Global Environment Facility (GEF) for funding this research as part of the 
PARCC West Africa project and BirdLife International, IUCN, UNEP-WCMC and the UK Met Office for 
providing data.  
 
In addition, we would like to thank the PARCC West Africa Technical Advisory Group, with special 
thanks to Neil Burgess, Elise Belle, Stuart Butchart, Jamie Carr, Wendy Foden, Andrew Hartley, Richard 
Jones and Bob Smith. 
 

  



Durham University. SDM with dynamic climate. 

 5 

Executive Summary 

 
With climate change driving changes in species’ distributions and abundance patterns, it is 

crucial to evaluate the effectiveness of current conservation strategies aimed at protecting 
biodiversity. Protected areas (PAs) are a core component of this effort, yet their static nature makes 
their continued effectiveness particularly vulnerable as species’ ranges shift in response to changing 
climatic conditions. Tropical and sub-tropical regions contain the majority of global biodiversity, yet 
are also projected to experience some of the most extreme changes in climate. West Africa is one 
such region, and here threats to biodiversity are further exacerbated by extensive habitat loss, which 
has left a highly fragmented landscape, with many of the region’s protected areas becoming 
increasingly isolated. This has the potential to reduce the ability of the PA network to protect the 
region’s biodiversity as species’ ranges shift. To date, the potential impact of climate change on the 
region’s PA network has yet to be fully assessed. 

We used models that link species’ distributions to biologically important climatic variables 
that are likely to define species’ distributions. We then used projections of future climatic conditions 
and estimates of dispersal potential to assess impacts of changing climatic conditions on faunal (birds, 
mammals and amphibians) distributions and representation across the region’s PA network.  

Climate change impacts on West African biodiversity across the region’s PA network are 
projected to increase during the 21st Century. By 2100, 91% of amphibian, 40% of bird, and 50% of 
mammal species are projected as ‘extremely likely’ to have reduced climate suitability across the 
region’s PA network. No amphibian species, and only three bird and one mammal species, are 
projected as ‘extremely likely’ to experience improved climate suitability in the region by 2100. 

We explored the importance of dynamically altering climate (i.e. using decadal climate data 
to modify species’ spatial responses) over time. However, we found, for this region, that the added 
complexity had only a limited impact on simulated species responses. Consequently, we used 
simulated spatial responses to climate change based on a mean change in suitability for future periods 
for all assessments of future change. 

Individual PAs are likely to both lose and gain species as distributions shift, resulting in 
changes to faunal communities. Species turnover is a measure of loss and gain of species at a site 
relative to species richness and provides a measure community change between time periods. Higher 
species turnover indicates a greater shift in projected community composition and suggests high 
climate change impacts. Species turnover (95% CI) for amphibians in PAs is projected to increase from 
26.5% (23.1, 31.3) in the period up to 2040 to 45.7% (35.1, 71.7) by 2100. Impacts for birds and 
mammals are lower, yet still represent considerable impacts to communities, with species turnover 
by 2100 projected at 32.4% (20.3, 45.9) and 34.9% (21.8, 56.2) for birds and mammals, respectively.  

We used a resampling approach to identify PAs that were in the upper quartile of projected 
species turnover for each taxonomic group for each time period, using three uncertainty tolerance 
thresholds (95%; 85%; 75%) to indicate those impacts for which we have most confidence. At the 95% 
uncertainty level, 80 out of 1,987 PAs are identified as being highly impacted for two or more taxa for 
the 2040 period. However, this falls to only five PAs by 2100. Accepting greater uncertainty, the 
number of multi-taxa (two or more) ‘high impact’ sites identified by 2040 increases to 134 at 85% 
uncertainty and 194 at 75% uncertainty. The majority of the multi-taxa ‘high impact’ PAs identified 
are located in the Guinea Forest region, with most of the PAs occurring within Ivory Coast.  

These projected impacts represent a significant threat to the region’s biodiversity, which is 
already under considerable pressure from habitat loss and hunting. This study has highlighted areas 
of greatest potential impact of climate change on PAs. Where species are likely to decline, steps must 
be taken to locate and properly protect potential refugia and to maximise connectivity between sites 
to facilitate range shifts. 
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1. Introduction 

 
Protected area (PA) networks are a core component of the global effort to conserve 

biodiversity against multiple and increasing anthropogenic threats. At present, more than 13% of the 
global land surface is designated as a PA (Coad et al. 2010; Bertzky et al. 2012). Although much 
variation exists in the quality of protection provided (Craigie et al. 2010; Laurance et al. 2012), PA 
status can significantly reduce impacts of anthropogenic threats (Bruner et al. 2001; Adeney et al. 
2009). Most PAs designated for biodiversity conservation have been selected because they protect 
an important habitat or population at the time. However, climate change is driving shifts in species’ 
ranges (Hickling et al. 2006; Chen et al. 2011; VanDerWal et al. 2013), and this redistribution of species 
against a background of static PA networks has the potential to decrease their effectiveness as a 
conservation strategy. It is therefore crucial to assess the potential for existing PA networks to 
maintain climate suitability for species into the future in order to mitigate impacts and ensure 
robustness of the network to climatic changes (Araújo et al. 2011).  
 

Projections of climate change impacts across taxonomic groups have predicted moderate to 
large range shifts for the majority of species (Huntley et al. 2008; Lawler et al. 2009; Barbet-Massin 
et al. 2012), with many species also undergoing range contractions (La Sorte & Jetz 2010) and declines 
in abundance (Gregory et al. 2009; Huntley et al. 2012; Visconti et al. 2015). Similarly, projected 
climate change impacts on protected area networks have predominantly predicted moderate to high 
turnover and declining representation of species (Coetzee et al. 2009; Hole et al. 2009; Araújo et al. 
2011; Bagchi et al. 2013). Where protected areas are projected to remain suitable for a species into 
the future, predictions suggest that many populations will decrease in abundance (Johnston et al. 
2013). 
 

The West Africa region contains high levels of biodiversity and endemism (e.g. West Guinea 
Forests; Orme et al. 2005) across multiple taxa (Kier et al. 2009). This region is also projected to 
experience extreme changes in climate in future, including the disappearance of rare climates and 
the emergence of novel conditions (Williams et al. 2007). Compounding these potential climate 
change impacts, West Africa has seen considerable habitat loss, with a large proportion of tropical 
forests either degraded or converted to agricultural land (Norris et al. 2010). This has produced a 
highly fragmented landscape and led to the increasing isolation of protected areas (DeFries et al. 
2005). In such a landscape, PA networks are especially important for protecting biodiversity, but the 
small size and isolation of many of the regions PAs increases the vulnerability of these sites to external 
pressures (i.e. hunting, logging and stochastic events). The additional impacts of climate change could 
threaten the effectiveness of the PA network and leave many species without necessary protection.  
 

Projected impacts of climate change on birds for a subset of West African PAs and other non-
protected sites of importance for birds (Important Bird Areas (IBA); Hole et al. (2009)) have suggested 
small to moderate impacts, with only a few areas, e.g. northern Senegal, projected to undergo high 
levels of species turnover. Hole et al. (2009) also assumed that species are able to perfectly track 
changing climate suitability, taking no account of species’ specific dispersal and, therefore, likely 
underestimating impacts. No comprehensive assessment has been made for the region’s existing PA 
network and no other taxonomic group has been evaluated. Thus, it is difficult to draw up broad 
adaptation guidelines from this limited assessment, with patterns of impacts expected to differ across 
taxa (Lawler et al. 2009) due to different patterns of exposure and vulnerability (Foden et al. 2013). 
 

Climate change is already impacting biodiversity (Sinervo et al. 2010; Cahill et al. 2013) and is 
likely to be a major driver of population declines and extinctions in the future (Maclean & Wilson 
2011). Predicting the potential impacts of climate change on biodiversity is crucial if we are to set 
appropriate conservation priorities and instigate management for the mitigation of future impacts 
(e.g. Heller & Zavaleta 2009). Climate change can impact populations through many different 
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mechanistic pathways (Geyer et al. 2011), both directly and indirectly, and with both positive and 
negative consequences (Davey et al 2012; Ockendon et al. 2014). Climate induced changes in species 
distributions, resulting from local extinction and colonisation events are one of the most frequently 
documented impacts of climate change on biodiversity (Parmesan et al. 1999; Parmesan & Yohe 
2003). Observed species’ latitudinal and elevational range shifts have been greatest with higher levels 
of warming (Chen et al. 2011) and, although many species are currently able to track observed shifts 
in their climate niche (Chen et al. 2011), the populations of less vagile species are likely to undergo 
rapid range contraction with increasing climatic changes (Devictor et al. 2008).  
 

Continually shifting species ranges are problematic for conservation management as 
conservation strategies must account for this temporal aspect, along with the associated uncertainty, 
in their spatial planning (Carvalho et al. 2011). Consequently, the area of habitat required to conserve 
the full range of current biodiversity into the future often increases considerably when accounting for 
these projected shifts in species distributions (Hannah et al. 2007). Reducing uncertainty within 
projections of future species distributions is of paramount importance because it enables better 
allocation of limited resources. Correlative models associating species distributions with bioclimatic 
variables are the dominant methodology for predicting species range shifts under future climate 
change scenarios. The strengths and weaknesses of this approach have been widely discussed (e.g. 
Araújo & Peterson 2012) with suggestions for improving predictive accuracy and increasing ecological 
relevance that include the incorporation of demographic data, habitat selection and species-specific 
traits (Huntley et al. 2010).  However, the inclusion of such elements into models of species future 
distribution is often hampered by the complete or partial absence of data, which is especially 
problematic in many biodiversity rich regions of the world. 

Whether a species’ range size increases or decreases will, in part, depend on the balance 
between the loss and gain of areas of suitable climate (climate space), although the response of other 
interacting biotic components of a species’ range are also likely to be important (Menendez et al. 
2008; Schweiger et al. 2008). However, in order to take advantage of newly available climate space a 
species must be able to track shifting climate and, consequently, intrinsic dispersal ability will be 
crucial in determining the fate of many species (Schloss et al. 2012, Visconti et al. 2015). Highly 
dispersive species are more likely to keep up with the rate of climatic shifts, but species with low 
dispersal ability must adapt in situ (i.e. Quintero & Wiens 2013; Vedder et al. 2013), persist within 
local climate refugia (i.e. Morelli et al. 2012) or else suffer local extinction. 

Recently, several studies have incorporated some measure of dispersal potential within 
projections of species’ future distributions, although the approaches vary greatly in complexity. The 
simplest approach is to consider only extreme scenarios (no dispersal vs. full dispersal; e.g. Coetzee 
et al. 2009; Araujo et al. 2011). Approaches that are intermediate in complexity include, allowing a 
species to track changing climates at a constant rate (Reside et al. 2012) and allowing a species’ range 
to shift by a distance based on the product of natal dispersal and number of generations over the 
study period (Barbet-Massin et al. 2012; Baker et al. 2015). These approaches omit any consideration 
of how climate suitability changes over time, and the consequences this has for dispersal in 
intermediate time-steps, such that species may jump over climatic barrier, either transient or 
permanent, that in reality would prohibit movement between patches with suitable climate. More 
complex approaches that account for changing climate and barriers to dispersal are likely to provide 
a better indication of likely range shifts for a species, especially when modelled on a fine temporal 
scale, i.e. annual dispersal (Engler & Guisan 2009; Early & Sax 2011; Lawler et al. 2013). However, the 
effect of climate-dispersal interactions on assessments of climate change impacts on biodiversity has 
yet to be evaluated across a broad spatial scale. This is important because there could be regional 
hotspots for the climatic inhibition of dispersal (e.g. areas of severe or rapid climate change and/or 
more sensitive species) and, thus, spatial heterogeneity both in the distribution of species affected 
by climate-dispersal interactions, and in regions where colonisations of suitable climate space are 
prevented. 
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In this study, we provide the first multi taxa assessment of climate change impacts to 

biodiversity within West Africa’s existing protected area network. Correlative species distribution 
models and regional climate data were used to evaluate potential climate change impacts on West 
African protected areas for three taxa; birds, mammals and amphibians, incorporating individual 
species’ dispersal abilities using available data. Impacts of climate change at both a community 
(species turnover, which is a measure of loss and gain of species at a site relative to species richness) 
and individual species (change in species’ specific climate suitability across the network) level 
between the baseline period (1971-2000) and three future time periods (2011-2040; 2041-2070; 
2071-2100) were calculated from estimates of modelled climate suitability and dispersal potential. 
Uncertainty in these projected impacts due to different climate projections and modelling 
methodologies were calculated, after also accounting for spatial dependency of species. These 
uncertainties were used to assess confidence in projected impacts and to identify robust ‘high impact’ 
sites for conservation prioritisation. This study highlights several areas that are likely to be impacted 
by climate change across multiple taxa, and also demonstrates the importance of considering 
uncertainty in projected impacts. Finally, we then undertook a regional scale assessment of the 
impacts of incorporating dynamic climate suitability into projections of climate-driven species range 
changes for species using a dynamic dispersal model. We predict that areas projected to be 
climatically unsuitable (either permanently or transiently) for a species will interact with dispersal 
traits and reduce the potential to colonise newly suitable climate space relative to dispersal 
assumptions that do not consider climate suitability. Thus, the effective availability of a species’ 
climate niche will be reduced for some species in spite of apparent dispersal potential. We assess the 
impact of dynamic dispersal on projected change in species richness, relative to the unlimited 
dispersal scenario, to test whether the incorporation of this extra dispersal process alters projected 
climate change impacts for West African Avian diversity. 
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2. Methods 

 
Regional climate models  

 
Climate data for this study were produced by the Met Office Hadley Centre (MOHC) for the 

period 1949 to 2100. The approach, described in more detail by Buontempo et al. (submitted), uses 
the MOHC regional climate modelling (RCM) system, PRECIS (Jones et al., 2004), with the SRES A1B 
scenario, at a ca. 50km2 resolution for the Africa CORDEX domain (Giorgi et al. 2009). PRECIS is a 
physically-based model that enables the dynamic downscaling of General Circulation Models (GCM) 
to an ecologically relevant spatial scale. Described within the RCM are processes including dynamical 
flow, the atmospheric sulphur cycle, clouds and precipitation, radiative processes, the land surface 
and deep soil. In order to set the RCM within a global climate context, the RCM is driven at the 
boundaries by time dependent large-scale fields (e.g. wind, temperature, water vapour and surface 
pressure, and sea-surface temperature), which are provided by the HadCM3 General Circulation 
Model (GCM; Gordon et al., 2000). It is important to provide a measure of uncertainty in the climate 
projections, and here this is provided using a Perturbed Physics Ensemble (PPE), where uncertainty is 
sampled systematically by perturbing uncertain parameters. For this study, a 17-member perturbed 
physics ensemble was used to assess uncertainties in atmospheric parameterizations (Murphy et al., 
2007; Collins et al., 2011). From this GCM ensemble, five members (different formulations of a 
forecast model) were selected for dynamical downscaling based on two criteria. Firstly, the 
projections for the historical period were compared to observed climate data and models that failed 
to capture important climate patterns (e.g. seasonal temperature cycles) were discarded. Secondly, 
from the remaining models, a five-member ensemble was selected that captured the full range of 
uncertainty in projections of future temperature and precipitation (see Buontempo et al., submitted, 
for more details). 
 

Four bioclimatic variables were calculated for each time period from the monthly RCM data 
for each of the five ensemble members: mean temperature of the warmest month, mean 
temperature of the coldest month, precipitation seasonality and an aridity index (mean 
precipitation/potential evapotranspiration). Precipitation seasonality was calculated as the 
coefficient of variation of mean monthly precipitation. These four bioclimatic variables have been 
shown previously to be good predictors of species ranges in tropical and sub-tropical systems (Bagchi 
et al. 2013), defining tolerance to thermal extremes and water availability. The influence of these 
bioclimatic variables on a species’ ability to persist in a landscape will not always be a direct function 
of the bioclimatic variable itself, but will often operate through impacts on vegetation or food (e.g. 
Pearce-Higgins et al. 2010). Thus, water availability, quantified here using the aridity index, a metric 
that has been used extensively for modelling the distribution of plants (e.g. Platts et al. 2010; Franklin 
2013; Platts et al. 2013), will largely affect bird and mammal distributions indirectly through impacts 
on vegetation (Choat et al. 2012), but will have more direct impacts on amphibians. For the baseline 
(1971-2000) and three future periods (‘2040’ = 2011-2040; ‘2070’ = 2041-2070; ‘2100’ = 2071-2100), 
the variables were calculated as means over the periods. 
 

Species Distribution modelling 
 

Species distribution polygons for the breeding ranges of all extant bird (from BirdLife 
International and NatureServe 2013), mammal and amphibian (IUCN 2013) species were gridded onto 
a 0.440 grid (ca. 50km2 at the equator), which corresponds to the native resolution of the RCM climate 
data. A species was considered to occur in a cell if the overlap between the distribution polygon and 
the cell was ≥10%, which is a liberal threshold that helps ensure that species with restricted ranges 
are represented. Species were only included in the analysis if ≥75% of their African breeding range 
occurred within the RCM extent. This cut-off was chosen to remove species with a substantial portion 
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of their breeding range beyond the RCM extent and, thus, species for which we were unable to model 
a large proportion of the species-climate relationship. All species with breeding ranges occupying 
fewer than five cells were also omitted from the analysis due to difficulties in modelling such sparse 
data (see Table 1 for exclusion details and Annex 1 for a full list of excluded species). This removed 
seven Critically Endangered species (5 amphibian; 2 mammal), 12 Near Threatened species (7 
amphibian; 5 mammal), 15 Endangered species (8 amphibian; 3 bird; 4 mammal), eight Vulnerable 
species (2 amphibian; 6 mammal), 27 Data Deficient species (19 amphibian; 9 mammal) and 80 
species of Least Concern (10 amphibian; 58 bird; 12 mammal). 
 

We used a jack-knife resampling approach to modelling species’ distributions as a function of 
bioclimate in order to quantify the uncertainty in modelled distributions introduced by uncertainty in 
the climate data, modelling methodologies and spatial dependency in species’ distributions (Hole et 
al. 2009; Bagchi et al. 2013; Baker et al. 2015). The following explanatory text is adapted from Bagchi 
et al. (2013). To deal with the issues of spatial autocorrelation, we estimated the transferability of the 
fitted models to spatially segregated test data (k-fold partitioning) and then used a nonparametric 
jack-knife to estimate the uncertainty in model predictions. The data were split into sampling units 
defined on the basis of African ecoregions (Olson et al., 2001). The same ecoregion often occurs in 
several, geographically distinct locations; non-contiguous areas of an ecoregion were considered 
separate sampling units. A few very large ecoregions (greater than 450,000 km2 in area, roughly 6° x 
6°) were split into smaller sampling units by intersecting them with a 6° x 6° grid and treating parts of 
the ecoregion in different grid squares as separate sampling units. This ensured that subsequent 
blocks formed by grouping the sampling units were similar in size. We grouped sampling units into 10 
blocks so that the mean of the bioclimatic variables differed little among blocks but each block 
spanned the full range of bioclimates. This ensured that block and bioclimate were orthogonal and 
avoided truncation of species response curves, which can cause problems when analysing segregated 
data (Thuiller et al., 2004). The baseline distribution of each species (1971-2000) was modelled as a 
function of the bioclimatic variables for each jackknife combinations of the RCM climate projection 
and block (leaving one block out in turn) using four modelling methodologies (generalised linear 
models (GLM), generalised additive models (GAM), generalised boosted models (GBM) and random 
forests (RF)). For each species, after cross-validation to optimise model performance, 100 models 
were fit to the blocked baseline distribution data, i.e. each combination of block (5), RCM climate 
projection (5) and modelling methodology (4) (see Bagchi et al. 2012 for full methodological details). 
 

Species’ specific dispersal ability was incorporated into projections of future range shifts 
following the methodology of Barbet-Massin et al. (2012), where values for climate suitability were 
adjusted by a colonisation probability. This latter value was derived by assuming that a species’ natal 
dispersal probability as a function of distance is described by a gamma distribution (shape = (mean 
distance/sd)2; scale = mean distance/shape) and that independent natal dispersal events across a 
time period (e.g. 30 years) can be described by the sum of x gamma distributions, where x equals the 
number of natal dispersal events expected within the period (length of period (years)/minimum age 
first breeding (years)). This distribution was rescaled so that the distance at which the probability of 
dispersal is maximised was equal to 1. All unoccupied cells located at less than or equal to this distance 
from an occupied cell were assumed to be colonisable over the focal time period and their climate 
suitability unaltered. Climate suitability for all cells located at greater distances from occupied cells 
was rescaled as a function of distance (climate suitability x colonisation potential), based on the 
rescaled gamma distribution, such that suitability decays with distance (see Barbet-Massin et al. 
(2012) for further details). 
 

Species-specific estimates of mean natal dispersal distance and age of first breeding were 
available for all birds (BirdLife International). For non-volant mammals, we obtained species’ specific 
body mass and age-of-first-breeding data from two data sources (Ernest 2003; Jones et al. 2009), with 
missing values inferred from closest relatives, and used allometric equations (Sutherland et al. 2000) 
to estimate median dispersal distances from these data. For Chiroptera, there are no similar 
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allometric equations; however, categorical mean natal dispersal estimates are available from IUCN 
(Foden et al. 2013; Carr et al. 2014). We used the mid-point of these estimates as the mean natal 
dispersal for these species. No similar data are available for amphibians, but a literature search 
suggested mean annual dispersal distances of 0.2km yr-1, with infrequent longer distance dispersal 
events are representative (e.g. Araújo et al. 2006, Smith & Green 2006). We therefore set mean natal 
amphibian dispersal equal to 1km and assumed annual dispersal events.  
 

There were no comprehensive estimates available for the standard deviation of natal 
dispersal and, therefore, we used a value [mean × 1.5] that fits the range of standard deviations of 
natal dispersal estimated for European birds (Paradis et al. 2002) and based on recapture data. This 
value assumes a higher probability of long distance events than a negative exponential distribution, 
which is probably realistic for most species. Nonetheless, further research on dispersal in tropical 
species is necessary to better parameterise models of dispersal. 
 

The median and 95% CI climate suitability, with future periods adjusted for dispersal 
potential, was obtained from across the 100 estimates of climate suitability (climate ensemble (5) x 
SDM (4) x block (5)), thus, accounting for uncertainty in climate projections, modelling methodology, 
and spatial dependency. 
 

Dispersal modelling 

To evaluate the interacting effects of dynamically changing climate suitability and species 
dispersal potential, we used the R package ‘MigClim’ (Engler & Guisan 2009; Engler et al. 2012), which 
has been specifically designed to model dispersal incorporating habitat suitability data from species 
distribution models. At each time step the model checks whether each unoccupied cell is suitable 
(climate suitability > 0) and, if true, calculates the probability of a cell being colonised (PCol) as follows: 

 

     Eqn. 1 
 

where PDisp i is the probability of dispersing to the target cell from source cell i, which is derived from 
a dispersal kernel. PClim is the climate suitability of the target cell and n is the number of cells with 
potential dispersers. Dispersal was modelled in a similar way to that described in the previous section, 
but here additionally incorporating changing climatic suitability over time. We used  ‘MigClim’, using 
a gamma distribution with shape = (mean/SD)2 and scale =  SD2/mean (following Barbet-Massin et al. 
2012), where the mean was derived from species-specific trait data (BirdLife International) and the 
SD was set equal to 2 × mean dispersal distance, which represents the upper value derived from 
empirical data (Paradis et al. 2002; Barbet-Massin et al. 2012). Species’ dispersal estimates were 
taken from BirdLife International’s database and comprises banded estimates of mean natal dispersal 
distance in the classes <5 km; 5-24 km; 25-49 km; 50-99 km; 100-199 km. The probability of dispersing 
to a cell at a given distance from the source cell was calculated for cells up to a distance of 20× the 
mean natal dispersal distance. Each dispersal probability was then divided by the sum of dispersal 
probabilities within this area of potential dispersal, such that the summed dispersal probability was 
equal to one (Chipperfield et al. 2011). Species were assigned to these classes based on data from 
published and unpublished estimates collated from a wide variety of sources (deriving from various 
studies involving marked individuals), with estimates extrapolated from related species with similar 
body size where primary estimates were not available).  We used the mid-point of these bands in our 
analysis. We focussed on birds only in this comparative analysis as birds were the only taxonomic 
group to have good estimates of dispersal potential for most species. 
 

The dispersal modelling was carried out at a spatial resolution of c. 5km (vs. c. 50km RCM 
resolution) in order to better represent the dispersal for species that have a low mean natal dispersal 
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distance (i.e. sub-50km). The initial distribution was based on the modelled probability of occurrence 
for the baseline climate data (1971-2000), but converted to binary presence/absence using the 
average probability/suitability approach, which was found to be robust across a range of prevalence 
(Liu et al. 2005). The modelled distribution might, by chance, predict false presences in areas widely 
spatially separated from the observed distribution due to similarity in climatic conditions. We 
constrained the initial predicted distribution to those cells that fall within two c. 50km grid cells (c. 
100km) of a presence (as inferred from the range polygons) so that the initial state of the simulation 
is a close approximation of the recorded distribution. The baseline distribution was then 
disaggregated to c. 5km resolution. 
 

For the dynamic-climate scenario, climate suitability was updated decadally using the species’ 
specific projected decadal suitability. Climate suitability for future projections were not converted 
into binary suitable/unsuitable data, but were used directly within the dispersal model as a measure 
of climate suitability. Thus, a cell with a modelled climate suitability of 0.8 is twice as suitable as a cell 
with a suitability of 0.4. However, to be consistent with the baseline modelled distribution data we 
set all values less than the species’ specific threshold for binary presence/absence to zero. Once the 
modelled climate suitability in a cell falls below this threshold the cell will experience a local 
extinction. This prevents cells from continuing as source cells despite having very low climate 
suitability. Each of the climate suitability projections was then disaggregated to c. 5km resolution. 
Once colonised, a cell was only capable of producing dispersing progeny after a time period equal to 
the age of first breeding was reached. Thus, if a species starts breeding at age three years a cell would 
need to be colonised for three years before it will start to act as a source population. Data on age of 
first breeding came from BirdLife International’s world bird database). The model outputs were 
converted back to a 50km resolution, with each c. 50km cell considered colonised if any of its 
constituent c. 5km subcells were colonised. Due to the random component of the dispersal model, 
for each species the dispersal model was run five times using the same initial distribution, climate 
suitability and dispersal estimate, with the consensus (colonised/uncolonised) for each cell across the 
five replicates used as the final output. To contrast with the dynamic-climate and static climate 
models, we also evaluated range extents assuming an unlimited-dispersal and a no-dispersal scenario. 
The former assumes that a species can occupy the full extent of the projected climate suitability for 
a particular time period and, thus, is defined as the full extent of the projected range. 
 

The effect of dispersal on projected climate change impact was assessed by calculating the 
change in species richness between the baseline period and the end-of-century (2070-2099 time 
period) for each cell across the region. This was done separately for both the dynamic climate and 
dispersal projections and for projections where static, end-of-century climate suitability was used. 
Here, we chose to use an end-of-century projections for evaluation of impact, rather than the mid-
century projections presented elsewhere, as we were comparing impacts within species for the same 
broad modelling approaches and climate scenarios (with and without dynamic climate effects). 
Hence, the high uncertainty amongst end-of-century models that we have reported elsewhere (Baker 
et al. 2015) is less important than in situations where we are interested in the likely impacts of climate 
change in real-world scenarios. Running these dynamic models until 2100 permitted the detection of 
differences between dynamic and static models that may have been rather limited in the short-time 
span between current and mid-century (2040-2069) projections. 
 
 

Protected area assessment 
 

Protected area polygons were obtained from the WDPA (IUCN and UNEP-WCMC 2013), and 
gridded on to a 0.440 grid (RCM resolution; ca. 50km2), calculating the percentage overlap of each PA 
with each grid cell. For this analysis, we only include PAs that have known boundaries (i.e. omitting 
point-only data), given the considerable uncertainty introduced when attempts are made to 
approximate the location of the PA using buffers (Visconti et al. 2013). 



Durham University. SDM with dynamic climate. 

 13 

  
Previous studies have carried out PA specific assessments of climate change impacts by 

downscaling climate data to fine resolutions (e.g. c. 5km2) for each PA and projecting species 
distributions directly at this finer resolution (Hole et al. 2009; Bagchi et al. 2013). However, the 
uncertainty introduced into the model projections by downscaling climate projections to such fine 
resolutions is unknown. We take a more conservative approach by assuming the PA has the climate 
suitability of the cell(s) in which it is embedded. Whilst this is likely to produce poor predictions for 
PAs that represent outlying climatic conditions within a cell (as might occur for example with 
mountain-top PAs), most PAs in this region share a similar climate to the surrounding landscape at a 
50km2 scale. In order to assess this uncertainty, and to provide an indication of where we must use 
more caution in interpreting our predictions, we compared the altitudinal profiles of each PA with the 
profile of the cell(s) in which it is embedded. Each PA and ca. 50km2 cell was disaggregated to ca. 
90m2 resolution and intersected with 90m2 resolution altitude data (Jarvis et al. 2008) using bilinear 
interpolation to correct for a slight offset in projections from original data. For each PA, we sampled 
200 altitudinal units randomly (weighted by the proportion of the PA in a cell) and 800 from the cell(s) 
as a whole, and calculated the mean difference in altitude between the two samples. Figure 1 shows 
the PAs where the mean difference between the altitudes for the two samples was greater than 100m 
(approx. equal to 1oC lapse rate (Danielson et al. 2003)), which is likely to suggest a biologically 
meaningful outlier. The predictions for these PAs should be treated with greater caution. 
 

For each PA, a weighted mean of climate suitability for each species was calculated, with 
weights equal to the percentage of a PA’s extent that overlaps a cell. The change in species richness 
for PA j (ΔSj) was calculated as: 
 

∆𝑆𝑗[𝑡2] =  ∑ 𝑃𝑗𝑘[𝑡2]
𝑠

𝑘=1
− ∑ 𝑃𝑗𝑘[𝑡1]

𝑠

𝑘=1
 

 
where, Pjk = weighted climate suitability of species k in PA j, t1 = baseline (1971-2000) and t2 = future 
[2040; 2070; 2100) time periods. Species turnover for each PA (Tj[t]) between two periods was 
calculated using the Bray-Curtis index, a measure of dissimilarity between two communities, using 
the weighted climate suitability, as: 
 

𝑇𝑗[𝑡2] =
∑ |𝑃𝑗𝑘[𝑡2]𝑠

𝑘=1 − 𝑃𝑗𝑘[𝑡1]|

∑ 𝑃𝑗𝑘[𝑡1] +𝑠
𝑘=1 ∑ 𝑃𝑗𝑘[𝑡2]𝑠

𝑘=1

 

 
These calculations were carried out separately for each of the resampled climate suitability 

projections. Thus, 100 estimates of each impact metric were produced and the 95% quantiles from 
across these values was used to assess uncertainty.  
 

For each species, the change in climate suitability across the PA network was measured as 
the summed weighted climate suitability for the future period divided by the baseline period. Where 
this value was > 1, a species was projected to gain climate suitability across the PA network; and 
where this value was < 1, a species was projected to lose climate suitability. For each species, this 
projected change in climate suitability was calculated for each of the resampled projections and the 
95% quantiles used to assess confidence in the projections. Where 95% CI of these projections do not 
span unity (i.e. consensus on projected change), we term changes as “extremely likely”, following the 
terminology of the IPCC 4th assessment report. 

 

Identifying ‘high impact’ sites robust to uncertainty 
 

In order to identify sites that are consistently projected to experience the greatest impacts 
from climate change, using species turnover as a metric of impact, we used a bootstrap resampling 
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approach to sample across the ensemble of projections, quantifying the proportion of times a PA was 
projected to experience a level of species turnover in the highest quartile across all the region’s PAs. 
Thus, for each of the three major taxonomic groupings (birds, mammals, amphibians), we randomly 
selected one of the five RCM climate projections and then for each PA we randomly selected a 
projected turnover estimate from the 20 turnover values, derived from varying SDM and block, 
relevant to that projection. The resultant estimates were divided into quartiles based on the values 
for all PAs. This procedure was repeated 10,000 times and the percentage of species turnover 
estimates falling with the upper quartile from the 10,000 replicates was recorded. Those PAs in which 
≥ 95% of the turnover estimates fell within the upper quartile were given a score of 1, and all other 
sites 0, and the scores combined across taxa. Thus, PAs scoring 1 are consistently ranked amongst the 
highest impacted sites for one of the three major taxonomic groupings, whereas, those scoring 2 or 
3 are high impact sites for two or three groups, respectively. This analysis was carried out for the 
three future time periods separately, to look at the impact of increasing uncertainty on identifying 
robust conservation targets, and for two lower uncertainty thresholds of ≥ 85% and ≥ 75%. 
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3. Results 

 

Species distribution modelling 
 

Species distributions models were run for 1,286 species across all taxa, from an initial pool of 
1,443. Table 1 summarises the number of species excluded for each criteria. Models for all species 
within each taxon showed good model discrimination throughout (median AUC: amphibian = 0.98; 
birds = 0.97; mammals = 0.97; Table 1). 
 

Taxa 
Regional 
species 

pool 

Number of species excluded by criteria 
(sequentially) 

  Number of 
species 

included 

Median AUC (95% 
quantiles) <75% RCM 

overlap 
<5 presences 

Single 
block 

  

Amphibians 206 24 23 9   150 0.98 (0.92, 0.99) 

Birds 830 61 0 1   768 0.97 (0.89, 0.99) 

Mammals 407 29 7 3   368 0.97 (0.87, 0.99) 
 

Table 1. Summary statistics showing the initial number of species from each taxonomic group that had some 
breeding range within the West African region, the number of species excluded by each exclusion criteria, and 
the total number of species included in the analysis. The results for the exclusion criteria are nested from left 
to right, such that the numbers shown are the numbers removed after the exclusion by the preceding criteria. 
Median AUC across all species distribution model is shown with the upper and lower 95% quantiles in 
parentheses. 

 

Assessment of climate change impacts on PA networks 
 

Across the region, 1987 protected area polygons were selected for analysis; a number that 
excludes 195 PAs that are currently only mapped as a point location, or sites that are designated as 
Biosphere Reserves (because they may include large areas that are not considered protected areas). 
For 11% of PAs (219), the mean elevation difference between the PA and the 50km2 cells in which it 
is embedded was greater than 100m, suggesting that the PA’s climate could be dissimilar from the 
mean climate of these cells. Figure 1 highlights the location of these PAs, and results for these PAs 
should be treated with additional caution. 
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Figure 1. Location of PAs that have a ‘dissimilar’ altitudinal profile, as a surrogate for climate, from the cell(s) in 
which they are embedded. A mean difference >100m between the altitudinal profile of the PA and the cell(s) 
are considered to represent a difference that could affect the biodiversity found in the PA. 

Projected impacts on amphibian representation in PAs 
 

Amphibian species turnover across the region’s PA network is projected to increase over the 
next century, with a median (95% CI) projected turnover of 45.7% (35.1, 71.7) by 2100 (Table 2). 
However, the uncertainty around these projected impacts is considerable (Fig. 2a; Annex 2), which 
makes it difficult to quantify impacts for many of the region’s PAs by 2100. Nonetheless, in several 
species richness countries, such as Ivory Coast and Ghana, the lower bounds of uncertainty are 
projected to exceed 40% turnover by 2100, suggesting high turnover across projections, and these 
areas are consistently projected to experience higher impacts across all time periods. The projected 
turnover by 2040 suggests that early intervention may be necessary to mitigate climate change 
impacts for amphibians, with some countries projected to experience >30% species turnover during 
this period. Such patterns are reflected in the projected change in species richness (Table 3), where 
the median change across the region’s PAs is projected to be -8.1 species (-9.9, -4.9) by 2100.  
 

When considering the median estimate of climate suitability, calculated across the ensemble 
of projections, for each amphibian species, climate suitability decrease for all 150 species in all time 
periods. When uncertainty in these projections was considered, no amphibian species were projected 
as ‘extremely likely’ to gain climate suitability during the century. By contrast, 91% (137) of species 
were projected to be ‘extremely likely’ to lose climate suitability by 2100, with the remaining species 
showing no consensus (2040; Gain (G) = 0, Lose (L) = 145, No Consensus (NC) = 5: 2070; G = 0, L = 144, 
NC = 6: 2100; G = 0, L = 137, NC = 13). 
 

Of the 150 amphibian species included in this analysis, 30 are currently classified as critical 
(CR), endangered (EN), vulnerable (VU) or data deficient (DD) (CR = 1; EN = 13; VU = 13; DD = 3). The 
climate suitability across the PA network is projected to decline for all 30 species based on the median 
estimate in all time periods. When uncertainty is taken into accounted 87% (26), 90% (27) and 77% 
(23) of species are projected to be ‘extremely likely’ to lose climate suitability by 2040, 2070 and 2100, 
respectively, with ‘no consensus’ for the remaining species. See Annex 3 for list of these amphibian 
species and their projected change in climate suitability. 

 

Projected impacts on bird representation in PAs 
 

Bird species turnover across the region’s PAs is the lowest of the three taxonomic groups 
considered in this study, increasing from a median (95% CI) projected turnover of 14.0% (10.5, 20.5) 
by 2040, to 32.4% (20.3, 45.9) by 2100 (Table 2). Once again, the uncertainty in these projected 
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impacts by 2100 is considerable (Fig. 2b; Annex 2), but suggest that the western portion of the Guinea 
Forest will experience the greatest impact on species turnover and richness (Table 3). 
 

The median climate suitability across the region’s PA network for bird species suggests that 
12.5% (100) of species will experience increased climate suitability by 2040 and 80, 5% (668) of 
species will experience declining suitability; by 2100, only 9.9% (82) of species are projected to have 
improved climate suitability. When uncertainty in the projections is considered, only 1.6% (12) of 
species are projected as ‘extremely likely’ to experience improved climate suitability by 2040 
[Anthoscopus punctifrons, Butastur rufipennis, Ciconia abdimii, Estrilda troglodytes, Falco alopex, 
Muscicapa aquatica, Nectarinia pulchella, Pterocles quadricinctus, Serinus leucopygius, Streptopelia 
decipiens, Vanellus spinosus, Vanellus tectus], and this decreases to three species by 2100 [Egretta 
gularis, Streptopelia decipiens, Tockus erythrorhynchus]. By 2100, 39% (302) of bird species are 
projected as ‘extremely likely’ to experience declining climate suitability across the region’s PA 
network (2010-2039: G = 12 L = 393, NC = 363; 2040-2069: G = 5, L = 341, NC = 422; 2070-2099: G = 
3, L = 302, NC = 463).  
 

Of the 768 bird species included in this analysis, 29 are currently classified as critical (CR), 
endangered (EN), vulnerable (VU) or data deficient (DD) (CR = 0; EN = 3; VU = 20; DD = 6). Based on 
the median estimates, climate suitability across the PA network is projected to decline for the 
majority of these species over all time periods (2040 = 86.2% (25); 2070 = 79.3% (23); 75.9% (22)). 
When uncertainty is taken into accounted 38% (11), 31% (9) and 28% (8) of species are projected to 
be ‘extremely likely’ to lose climate suitability by 2040, 2070 and 2100, respectively, with ‘no 
consensus’ for the remaining species. See Annex 3 for list of these bird species and their projected 
change in climate suitability. 
 

Projected impacts on mammal representation in PAs 
 

Mammal species turnover across the region’s PA network is lower than the projected 
turnover for amphibians, and comparable to bird impacts, with median species turnover increasing 
from 15.7% (12.1, 22.4) to 34.9% (21.8, 56.2) between 2040 and 2100, respectively (Table 2; Fig. 2c; 
Annex 2). The highest losses of species richness are projected to occur, once again, across the western 
Guinea Forests (Table 3).  
 

The median climate suitability across the region’s PA network for mammal species suggests 
that 9%( 33) of species will have increased climate suitability by 2040, declining to 5.2% (19) by 2100. 
The remaining species are projected to have reduced climate suitability across the network. When 
uncertainty in the projections is considered, only two species are projected as ‘extremely likely’ to 
gain climate suitability by 2040 [Hipposideros ruber, Pipistrellus rusticus], which decreases to one 
species by 2100 [Damaliscus lunatus]. By 2100, >50% of mammal species are projected as ‘extremely 
likely’ to experience declining climate suitability across the region’s PA network (2040; G = 2, L = 198, 
NC = 168: 2070; G = 2, L = 183, NC = 183: 2100; G = 1, L = 185, NC = 182).  
 

Of the 368 mammal species included in this analysis, 61 are currently classified as critical (CR), 
endangered (EN), vulnerable (VU) or data deficient (DD) (CR = 5; EN = 12; VU = 17; DD = 27). Based on 
the median estimates, climate suitability across the PA network is projected to once again decline for 
the majority of these species over all time periods (2040 = 93.4% (57); 2070 = 90.2% (55); 90.2% (55)). 
When uncertainty is taken into account, 49% (30), 44% (27) and 46% (28) of species are projected to 
be ‘extremely likely’ to lose climate suitability by 2040, 2070 and 2100, respectively, with ‘no 
consensus’ for the remaining species. See Annex 3 for list of these mammal species and their 
projected change in climate suitability. 
 



Projected Impacts of Climate Change on Biodiversity in West African Protected Areas. FINAL Version. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Projected species turnover (Bray-Curtis index), as a measure of change in community composition reflecting both gain and loss of species, between the baseline period 
(1971-2000) and three future periods (2011-2040; 2041-2070; 2071-2100) for A) amphibians, (n=150) B) birds (n=768) and C) mammals (n=368). Colours reflect the category 
encompassing the median projected turnover and the colour intensity, fading to grey as uncertainty increases indicates the uncertainty in these projected impacts based on the 
number of median turnover categories spanned by the 95%CI. 
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Country PA (n) 
Amphibian species turnover (%)   Bird species turnover (%)   Mammal species turnover (%) 

2011-2040 2041-2070 2071-2100  2011-2040 2041-2070 2071-2100  2011-2040 2041-2070 2071-2100 

ALL 1987 26.5 (23.1, 31.3) 36.8 (29.3, 50.9) 45.7 (35.1, 71.7)   14.0 (10.5, 20.5) 23.4 (15.6, 31.0) 32.4 (20.3, 45.9)   15.7 (12.1, 22.4) 27.5 (17.1, 34.7) 34.9 (21.8, 56.2) 

BEN 28 21.5 (17.3, 29.6) 36.6 (23.2, 50.5) 46.7 (33.2, 71.8)   12.3 (8.8, 20.0) 20.1 (12.6, 32.8) 32.1 (19.0, 43.4)   13.6 (9.6, 22.1) 26.5 (16.2, 34.3) 32.5 (20.6, 55.4) 

BFA 75 17.4 (10.4, 28.2) 27.1 (12.2, 47.5) 39.8 (16.3, 73.8)   9.8 (7.6, 19.8) 16.9 (9.0, 31.7) 30.4 (11.6, 48.1)   14.6 (10.2, 23.4) 25.3 (12.6, 35.9) 35.0 (15.0, 66.5) 

CIV 239 40.3 (32.7, 50.8) 49.1 (39.3, 71.2) 59.3 (44.6, 80.4)   18.9 (15.2, 24.9) 29.8 (21.5, 40.2) 39.8 (28.7, 53.0)   19.6 (15.1, 27.0) 31.7 (23.1, 46.3) 42.6 (29.2, 64.0) 

GHA 256 38.3 (29.4, 55.2) 50.1 (36.2, 68.7) 60.5 (45.2, 80.4)   17.5 (15.1, 23.5) 29.5 (21.4, 41.8) 38.9 (27.8, 53.0)   18.0 (14.4, 24.3) 31.0 (21.4, 44.8) 41.4 (29.4, 62.0) 

GIN 106 21.5 (17.2, 26.8) 27.7 (20.8, 38.2) 36.2 (26.5, 68.7)   15.6 (11.5, 20.2) 18.0 (13.7, 28.7) 25.7 (17.4, 35.3)   14.9 (11.4, 23.7) 22.2 (15.6, 30.4) 29.3 (19.2, 47.3) 

GMB 12 35.5 (15.0, 51.1) 48.0 (20.6, 65.9) 56.6 (32.2, 75.5)   16.4 (8.8, 27.5) 28.8 (17.3, 46.4) 42.8 (23.4, 60.3)   23.3 (10.0, 36.9) 39.5 (22.1, 59.7) 52.3 (29.3, 73.0) 

GNB 19 22.9 (11.9, 34.6) 35.6 (19.9, 62.2) 50.4 (25.8, 81.3)   14.0 (10.0, 18.9) 23.0 (15.7, 32.4) 31.3 (19.2, 55.9)   16.1 (10.4, 25.4) 29.3 (18.0, 46.4) 43.3 (25.0, 71.1) 

LBR 16 49.5 (40.1, 61.9) 56.5 (43.2, 70.9) 65.6 (53.1, 82.2)   16.9 (13.7, 23.8) 24.8 (19.8, 36.5) 37.6 (27.4, 49.7)   20.0 (15.8, 30.6) 28.9 (21.9, 39.3) 39.7 (30.2, 53.9) 

MLI 32 18.5 (11.5, 27.1) 26.3 (12.7, 53.3) 39.4 (17.2, 88.4)   10.9 (7.1, 21.1) 21.5 (9.8, 32.7) 32.5 (14.0, 69.7)   16.8 (10.4, 22.7) 27.5 (13.5, 41.0) 38.4 (18.1, 78.9) 

NER 15 23.2 (18.2, 34.3) 27.6 (20.7, 41.8) 34.6 (21.3, 74.1)   14.9 (9.2, 27.7) 23.7 (13.0, 32.2) 32.6 (15.6, 56.8)   18.3 (13.6, 26.1) 28.4 (19.2, 34.9) 37.1 (23.5, 66.0) 

NGA 969 24.5 (21.1, 30.1) 33.8 (26.4, 44.6) 41.2 (32.4, 63.9)   12.1 (8.8, 18.3) 20.2 (13.7, 28.8) 29.6 (17.2, 41.3)   14.5 (11.0, 20.0) 24.4 (15.2, 30.5) 31.6 (18.7, 50.0) 

SEN 109 26.8 (19.9, 39.2) 45.3 (26.0, 61.6) 60.9 (33.7, 82.0)   19.0 (11.3, 27.4) 37.2 (20.6, 52.9) 49.9 (28.4, 74.5)   24.7 (15.4, 39.9) 46.4 (26.0, 66.5) 57.5 (31.2, 84.1) 

SLE 36 41.4 (31.6, 51.1) 48.9 (36.7, 67.1) 53.7 (40.1, 78.9)   18.6 (14.6, 27.3) 28.0 (20.8, 38.1) 35.6 (24.9, 44.9)   19.8 (15.0, 26.8) 29.7 (21.6, 40.9) 39.3 (25.1, 51.9) 

TCD 14 24.0 (15.6, 35.4) 32.9 (20.9, 58.9) 45.1 (24.5, 84.7)   11.4 (8.4, 20.3) 21.6 (11.1, 30.1) 31.9 (13.7, 59.5)   16.9 (9.8, 22.8) 28.1 (13.1, 40.3) 36.5 (16.1, 68.7) 

TGO 61 24.2 (17.9, 35.3) 40.4 (24.0, 54.6) 50.2 (35.4, 74.0)   13.7 (11.5, 25.2) 23.0 (15.8, 36.0) 34.2 (21.3, 43.8)   15.0 (11.4, 25.4) 27.7 (16.8, 35.2) 34.7 (23.4, 56.3) 

                          
 

Table 2. Median (95% CI) projected species turnover (%) between the baseline period (1971-2000) and three future time periods (2011-2040; 2041-2070; 2071-2100) for each 
taxon, calculated across all PAs in the region and for each country separately. BEN = Benin, BFA = Burkina Faso, CIV = Cote d’Ivoire, GHA = Ghana, GIN = Guinea, GMB = Gambia, 
LBR = Liberia, MLI = Mali, NER = Niger, NGA = Nigeria, SEN = Senegal, SLE = Sierra Leone, TCD = Chad, TGO = Togo. PARCC project countries are in bold characters. 
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Country 
Amphibian change in species richness (n)   Bird change in species richness (n)   Mammal change in species richness (n) 

2011-2040 2041-2070 2071-2100  2011-2040 2041-2070 2071-2100  2011-2040 2041-2070 2071-2100 

ALL -3.5 (-6.0, -2.5) -5.8 (-8.3, -3.5) -8.1 (-9.9, -4.9)   -19.4 (-27.4, -13.8) -29.7 (-43.0, -14.8) -42.6 (-71.6, -19.7)   -8.9 (-11.7, -6.1) -14.2 (-23.2, -8.3) -21.4 (-36.6, -11.8) 

BEN -2.6 (-3.6, -1.9) -4.0 (-5.4, -2.7) -5.0 (-7.0, -3.7)   -12.5 (-17.7, -8.1) -18.3 (-28.8, -10.5) -24.4 (-38.1, -11.6)   -6.1 (-8.6, -4.1) -10.5 (-15.8, -7.0) -13.9 (-23.0, -7.9) 

BFA -2.1 (-6.0, -0.1) -4.1 (-8.2, -0.6) -7.4 (-9.6, -1.9)   -12.7 (-20.6, -1.1) -15.3 (-32.6, -0.0) -29.7 (-70.2, -3.2)   -7.2 (-12.5, -1.9) -12.3 (-21.1, -3.8) -18.4 (-32.5, -4.8) 

CIV -8.7 (-11.1, -7.2) -10.5 (-13.7, -8.4) -13.0 (-16.6, -10.3)   -44.6 (-64.4, -24.9) -56.7 (-85.2, -36.8) -72.2 (-97.6, -43.3)   -17.7 (-24.4, -13.0) -26.2 (-42.2, -20.0) -35.7 (-52.9, -24.3) 

GHA -8.9 (-11.9, -7.2) -11.2 (-14.6, -8.4) -13.5 (-17.9, -10.4)   -43.1 (-58.4, -21.1) -56.0 (-86.5, -32.9) -70.0 (-104.0, -40.0)   -16.8 (-23.1, -11.8) -26.4 (-44.1, -18.2) -35.4 (-55.7, -23.1) 

GIN -2.9 (-5.3, -2.1) -4.2 (-9.2, -2.1) -6.9 (-11.8, -3.8)   -29.5 (-44.4, -7.2) -18.6 (-31.9, -5.8) -27.5 (-56.7, -12.6)   -7.9 (-15.7, -4.7) -14.3 (-25.8, -7.1) -22.2 (-38.5, -10.6) 

GMB -2.5 (-8.3, 1.1) -3.6 (-9.7, 0.3) -4.1 (-13.4, -0.3)   -20.8 (-71.4, 5.9) -47.5 (-90.5, -3.8) -65.6 (-131.1, -3.5)   -10.2 (-25.5, 2.5) -18.8 (-35.0, -1.8) -24.5 (-45.3, -5.2) 

GNB -1.5 (-2.6, -0.2) -2.7 (-3.7, -0.8) -3.4 (-4.7, -1.2)   -9.7 (-19.4, -3.7) -15.9 (-32.6, -5.7) -22.3 (-43.0, -7.4)   -4.4 (-8.5, -1.9) -9.5 (-15.0, -3.4) -12.1 (-19.3, -4.5) 

LBR -4.6 (-7.4, -2.9) -5.1 (-7.9, -2.8) -5.8 (-8.2, -3.5)   -17.8 (-27.4, -8.3) -22.6 (-35.9, -9.4) -29.9 (-46.7, -15.3)   -7.6 (-11.0, -2.3) -9.7 (-14.6, -3.8) -12.0 (-20.0, -5.7) 

MLI -1.3 (-2.6, -0.2) -2.3 (-4.0, -0.5) -3.9 (-5.4, -1.4)   -4.6 (-10.4, -0.1) -10.6 (-20.8, -1.1) -20.0 (-42.5, -4.9)   -3.5 (-6.2, -1.2) -7.0 (-12.3, -1.6) -11.3 (-19.6, -3.4) 

NER -0.2 (-0.8, -0.0) -0.4 (-1.3, -0.0) -0.8 (-2.4, 0.0)   -0.3 (-2.8, 2.1) -0.7 (-7.6, 0.3) -1.6 (-22.2, 0.5)   -0.7 (-2.4, -0.2) -1.9 (-4.8, -0.0) -3.2 (-9.4, -0.0) 

NGA -2.4 (-5.4, -1.1) -4.3 (-7.5, -1.5) -7.0 (-9.3, -2.5)   -10.6 (-29.6, -4.7) -24.0 (-42.5, -4.7) -36.6 (-65.8, -7.6)   -6.5 (-9.1, -3.3) -10.8 (-19.1, -3.6) -15.9 (-32.6, -6.1) 

SEN -1.0 (-2.9, -0.5) -1.9 (-4.3, -1.0) -2.5 (-5.6, -1.4)   -10.8 (-22.9, -0.5) -24.4 (-41.2, -8.1) -31.2 (-52.0, -14.8)   -5.3 (-9.5, -1.6) -9.9 (-15.0, -5.0) -11.6 (-17.7, -6.4) 

SLE -7.2 (-9.3, -5.3) -8.4 (-11.4, -6.0) -9.6 (-12.9, -6.3)   -35.5 (-45.7, -25.4) -50.4 (-70.0, -28.3) -61.3 (-78.9, -22.3)   -14.9 (-20.2, -9.4) -21.4 (-30.7, -12.6) -27.4 (-36.2, -13.4) 

TCD -1.0 (-1.8, -0.3) -1.3 (-2.2, -0.3) -1.8 (-2.9, -0.6)   -3.6 (-6.5, -0.6) -3.0 (-7.5, -0.4) -6.2 (-19.8, -0.5)   -1.7 (-2.9, -0.5) -2.5 (-5.3, -0.7) -3.7 (-9.7, -0.6) 

TGO -7.8 (-11.0, -5.8) -12.5 (-15.4, -7.8) -15.0 (-19.3, -10.3)   -33.9 (-59.3, -20.0) -53.6 (-82.4, -33.6) -67.3 (-108.3, -36.3)   -18.8 (-26.7, -12.9) -30.4 (-42.6, -20.6) -39.6 (-64.9, -23.0) 

                        

 
 
Table 3. Median (95% CI) projected change in species richness between the baseline period (1971-2000) and three future time periods (2011-2040; 2041-2070; 2071-2100) for 
each taxon, calculated across all PAs in the region and for each country separately. BEN = Benin, BFA = Burkina Faso, CIV = Cote d’Ivoire, GHA = Ghana, GIN = Guinea, GMB = 
Gambia, LBR = Liberia, MLI = Mali, NER = Niger, NGA = Nigeria, SEN = Senegal, SLE = Sierra Leone, TCD = Chad, TGO = Togo. PARCC project countries are in bold characters. 
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Figure 3. ‘High impact’ PAs robust to uncertainty identified via a bootstrapping procedure that determined the percentage of time a site was ranked in the upper quartile for 
species turnover across estimates of uncertainty in three different time periods and for three levels of uncertainty tolerance. The colour represents the number of taxa for which 
the PA was identified as being ‘high impact’ for a given level of uncertainty tolerance: Red = three taxonomic groups; Purple = two taxonomic groups; Green = one taxonomic 
group; Grey = not a robust ‘high impact’ site. 



Projected Impacts of Climate Change on Biodiversity in West African Protected Areas. FINAL Version. 

 

 

 

Identifying high impact cross-taxa conservation targets robust to 
uncertainty 
 

At the 95% uncertainty level, 26 PAs (see Annex 3) are identified that are consistently 
projected to experience levels of species turnover in the upper quartile across the region’s PAs (n = 
1987 polygons) for all three taxa for the period up to 2040, and 80 PAs are identified for two or more 
taxa over this same period (Table 4). By 2070, seven PAs are projected to be in the upper quartile for 
three taxa (four in Cote d’Ivoire, two in Ghana, and one in Chad), and by 2100 only a single PA is 
projected to be (Banie in Guinea), and six PAs for two or more taxa. Relaxing the level of uncertainty 
that a PA is in the upper quartile for projected species turnover across the region’s PAs to 85% or 
75%, results in the number of multi-taxa (two or more) ‘high impact’ sites increasing to 134 and 194, 
respectively, by 2040. The number of ‘high impact’ sites identified for two or more taxa by the end-
of-century using these relaxed uncertainty levels declines to 17 and 28 PAs, respectively. The majority 
of the multi-taxa ‘high impact’ PAs are located in the Guinea Forest region, with most of the PAs 
occurring within the Ivory Coast. With relaxed (85% and 75%) levels of uncertainty, ‘high impact’ 
multi-taxa sites are also identified in neighbouring countries of Liberia and Ghana, and in the northerly 
countries of The Gambia and Senegal. 
 

  Uncertainty level =  95%   85%   75% 

  Number of taxa = 3 2 1   3 2 1   3 2 1 

Ti
m

e 
p

er
io

d
 

2011-2040 26 54 185   54 75 244   66 128 299 

2041-2070 7 20 136   22 78 236   49 109 301 

2071-2100 1 5 84   5 12 111   7 21 169 
                          

 
Table 4. Number of PAs identified as ‘High impact’ robust to uncertainty via a bootstrap resampling procedure 
that determined the percentage of time a site was ranked in the upper quartile for species turnover across all 
the region’s PAs, sampling from across the 100 estimates of projected species turnover for each PA, in three 
different time periods and for three levels of uncertainty tolerance. The ‘high impact’ sites were identified for 
each taxonomic group separately and the congruence in these assessments is shown by the number of sites 
identified for multiple taxa simultaneously. 
 
 

Projected changes in bird species distributions modelled using dynamic 
models and dynamic climate 
 

The incorporation of dynamic dispersal across landscapes with changing climates can affect 
projected range shifts, notably resulting in a marked reduction in the number of species able to 
colonise an area (Fig. 4). Of the five focal PARCC countries, only Liberia and Sierra Leone appear to be 
affected by this additional layer of modelling, but the major impacts occur across Ivory Coast and, in 
particular, affect the species rich Guinea Forest and coastal regions (Fig 4c).  
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Figure 4. The change in bird species richness between the baseline (1971-2000) and the end-of-century (2091-
2100) using: a) a static future climate and dynamic dispersal and b) dynamically changing climate and 
dispersal modelling. Panel (c) shows the difference between (a) and (b) with zero indicating that there is no 
difference in species richness between the two dispersal scenarios and negative numbers indicating that 
species richness projections based on the dynamic dispersal models are lower than those based on unlimited 
dispersal. 

Thus, these results show that changing climate suitability can interact with species’ specific 
dispersal potential to reduce projected climate driven range shifts, which in turn alters continental 
scale patterns of climate change impact on avian species richness, with potential important 
implications for regional conservation prioritization across some areas. However, because climate 
across West Africa is projected to change at a moderate rate, the impacts of incorporating 
dynamically changing climate data are relatively limited across much of West Africa (see the very 
limited impact in Figure 4c above). In areas of the world where climate is changing much more rapidly, 
e.g. as is happening currently in Arctic regions, incorporating such dynamically changing climate into 
dispersal models could markedly affect projections of species range shifts. 
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4. Discussion 

 
Climate change has the potential to impact the fauna of West Africa severely, and to reduce 

the effectiveness of the protected area network to conserve the region’s biodiversity. Across the 
network, substantial impacts are projected for all three taxa studied by 2100, although there is 
considerable spatial heterogeneity and uncertainty in these projections. At a country level, the 
highest estimates of climate change impacts (upper bounds of 95% CI) by 2100 for all three taxa 
predict levels of turnover exceeding 60% of species, with even higher impacts projected for 
amphibians in parts of the network. In parts of the region, many PAs could become unsuitable for a 
high proportion of species currently protected. Such drastic changes in communities could severely 
impact functionality (i.e. productivity), where lower species richness is likely to reduce functional 
diversity, which could decrease a community’s ability to buffer environmental changes due to the loss 
of complementarity and redundancy of functional traits (Allan et al. 2011; Hooper et al. 2012; Reich 
et al. 2012). There is considerable uncertainty in these estimates, with the more optimistic of 
projections suggesting that many species may gain climate space, at least in the short term. However, 
even in the most optimistic scenarios, PAs are projected to experience changes in species composition 
and a loss of species richness, with consequences for ecosystem function and stability that are often 
unknown (Wardle et al. 2011). 
 

By modelling the uncertainty in projections of species responses to climate change, we are 
able to identify PAs that are consistently projected to experience the highest climate change impacts 
for each of the three taxonomic groups. Furthermore, we are able to identify PAs that are projected 
to experience ‘high impacts’ for multiple taxa, which might be priority sites for further assessment. 
Substantial impacts were consistently projected by 2040, even with a strict threshold for uncertainty 
(95%), for PAs across southern Ghana, Ivory Coast and Liberia, with many PAs identified as robust 
‘high impact’ sites for multiple taxa. This region contain much of the remaining tropical forest in West 
Africa, with these three countries containing the vast majority of the Upper Guinea Forests endemic 
bird area (Stattersfield et al. 1998), which hosts 15 endemic restricted range bird species. The 
biodiversity of the area is rather poorly known, with three (plus two suspected) bird species new to 
science having been discovered there in recent decades (Stattersfield et al. 1998). The fact that these 
areas have been heavily deforested, such that movement among forest PAs for species is reduced, 
may serve to exacerbate future climate change impacts.  
 

Species turnover is projected to be particularly high for all taxonomic groups in The Gambia 
and Senegal region, although only a few of these PAs were identified as ‘high impact’ sites at the 
higher uncertainty levels (95%, 85%), and then only in the period up to 2040. Hole et al. (2009) 
projected severe impacts for IBAs in northern Senegal using different species distributions, climate 
data and modelling approaches. Our results suggest greater caution must be taken in assuming severe 
impacts in the region due to the substantial uncertainty inherent in such projections. Several isolated 
PAs in Niger and Chad (i.e. Oasis du Kawar (Ramsar Site) and Lakes of Ounianga (World Heritage Site); 
see Annex 3) are classified as ‘high impact‘ sites at the highest uncertainty threshold for two or more 
taxa. However, as such areas have relatively low species richness compared to tropical regions, these 
high impacts are probably affecting relatively fewer species compared to the tropical PAs. 
Nonetheless, these changes could still result in a large impact on the functioning of these ecosystems 
(Brown et al. 1997). 
 

By 2070-2099, uncertainty in the projections reduced the number of ‘high impact’ sites 
identified, especially at the highest uncertainty threshold, where the only site identified as ‘high 
impact’ for multiple taxa is located in southern Ivory Coast. This shows the importance of considering 
uncertainty in conservation prioritisation, where there must be a careful balance between impact and 
risk, both of which increase through time. Conservation management decisions need to consider the 
costs of being ‘wrong’ and, perhaps, accept greater uncertainty when the costs of making an incorrect 
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prioritisation decision are high, i.e. loss of critical species or functional groups. Because conservation 
funds are limited, the consequences of allocating resources to sites falsely identified as ‘high impact’ 
are as important as underestimating impacts and missing mitigation opportunities elsewhere. Thus, 
identifying management priorities presents analytically complex problems with many potentially valid 
solutions. The explicit incorporation of uncertainty into the decisions will help maximise the 
effectiveness of limited resources. 
 

Correlative species distribution modelling is the dominant methodology for assessing 
potential climate change impacts on future species distributions, although recent trait-based (Foden 
et al. 2013) and mechanistic (Kearney & Porter 2009; Buckley et al. 2010) approaches have also been 
developed. Whilst the correlative SDM approach makes several simplifying assumptions (Araújo & 
Peterson 2012), such as species distributions being at equilibrium with climate, the results have often 
been found to match closely with independent observational data (Hill et al. 1999; Araújo et al. 2005; 
Gregory et al. 2009) and predictions from mechanistic models (Kearney & Porter 2009; Buckley et al. 
2010). The accuracy of future projections is more difficult to assess, even if good validation datasets 
are available for models developed and tested on contemporary or historical data, as long-term 
distributional shifts might be affected by, for example, novel climates (Williams & Jackson 2007; 
Williams et al. 2007; Hobbs et al. 2009) or community dissociations (Araújo & Luoto 2007) that have 
yet to become evident. Comparisons between correlative and mechanistic models (e.g. biophysical 
or life-history models) have found some congruence in predictions of future range shifts (Kearney et 
al. 2010), but also substantial differences (Kearney & Porter 2009). Currently, when assessing climate 
change impacts on broad spatial scales and including many species from multiple taxonomic groups, 
the correlative SDM approach is likely to provide the best available option, given the lack of species’ 
specific trait data (which is especially true in poorly studied tropical systems) to inform trait-based 
and mechanistic approaches. 
 

When projecting species climate suitability to protected areas that are often smaller than the 
ca. 50km2 scale used to model the species-climate relationship, there are several difficulties and 
sources of uncertainty. The climatic conditions predicted for a single cell are representative of the 
mean climate expected in this cell, but cannot capture the finer scale climatic variability within this 
area. Spatial variability in climatic conditions found below the resolution of the climate models could 
still provide refugia for species when the surrounding landscape is experiencing conditions 
incompatible with a species’ ability to persistence. Microclimates have been shown to reduce an 
animal’s exposure to climatic variability and allow persistence within a landscape (Scheffers et al. 
2014). Thus, a PA could potentially experience a very different climate to the surrounding landscape 
if the PA is located in an area that is particularly distinct from the conditions found in the 
surroundings. This could be particularly relevant in areas of high relief, where PAs are located on land 
of low agricultural quality on high elevation and steep ground. For the analyses here, this is of less 
concern as, apart from some higher ground in Guinea and central Niger, West Africa is almost 
uniformly of low relief. PAs that are located at the extremes of a cell’s elevational profile are most 
likely to be climatically different from the surrounding landscape, and, consequently, support 
different species. We have attempted to identify PAs that are located at elevational extremes with 
respected to the cell from which they are embedded, and our analysis highlighted ca. 10% of the PAs 
that should be treated with additional caution. 
 

Here we have evaluated potential climate change impacts to species from three taxonomic 
groups across West Africa’s protected area network and identified ‘high impact’ sites robust to the 
uncertainty in the climate data and modelling methodologies. After accounting for uncertainty, the 
region projected to experience the greatest impact is the Guinea Forest, with the highest density of 
‘high impact’ targets for two or more taxa located in the Ivory Coast and Southern Ghana. Amphibians 
are projected to experience more substantial impacts by 2100 than either birds or mammals. This is 
rather worrying, as much better data currently exist on the distributions of the latter two taxa 
globally, meaning that most climate impact assessments on biodiversity in the tropics tends to focus 
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on these groups. Our work demonstrates that more substantial impacts may be suffered by poorly 
recorded taxa than currently projected by most climate impact studies in tropical systems, which 
focus on well recorded groups. The greater projected impact on amphibians may be due to their 
tendency to have smaller ranges, perhaps in part dictated by their mobility and, as a result, their 
climatic niche is narrow and suitable climate is less likely to persist in the PAs they occupy. 
 

Finally, our exploration of the impacts of incorporating dynamically changing climate data 
into distribution models that also incorporate dispersal, suggested that the change in predictions are 
relatively limited across much of West Africa. This in turn suggests that models using static future 
climate projections, the current norm for most current species distribution modelling will provide 
useful results for species in the majority of situations. However, in areas where climate is changing 
rapidly, and where there is the potential for spatio-temporal bottlenecks in species responses to 
climatic change, such dynamic climate and dispersal models could provide additional insight 
 

In the absence of dynamic-climate, the potential for many species to respond to climate 
change by tracking their shifting climatic niche is overestimated, even when accounting for species’ 
specific dispersal potential (i.e. static-climate scenario, as per the main analysis here and Baker et al. 
2015). Whilst unlimited dispersal assumptions are clearly inappropriate for many species, estimates 
of dispersal that fail to include interactions with the environment can also vastly overestimate the 
likely dispersal potential of species. The consequences of these failures to track shifting climatic 
niches for individual species could be severe (see separate individual species figures), but there are 
also implications for spatial patterns of biodiversity due to considerable spatial heterogeneity in the 
effect of dynamic-climate on species dispersal and, consequently, on regional species richness.  
 

However, the deficits in the number of species projected to colonise a grid cell under the two 
different dispersal scenarios is only high in some localized areas of West Africa (e.g. parts of the 
Guinea Forest). As these countries are already projected to experience the greatest impacts of climate 
change to their biodiversity over the next century, these results are unlikely to alter conservation 
priorities across the region. Thus, the dispersal approach employed in Baker et al. (2015), and the 
main text of this document, is likely to be adequate for assessing the broad patterns of impacts across 
the region. Where research focused on individual species or was conducted at a finer resolution, 
where habitat patches and physical barriers to dispersal can be incorporated, there is likely to be 
considerable merit in using models to project the potential impacts of climate change on species and 
communities.  
 

In conclusion, we have shown that the fauna of the western section of the Guinea Forest 
region is highly vulnerable to climate change impacts and, thus, the region’s protected area network 
is likely to undergo severe changes in species representation and declines in species richness in the 
future. We recommend these ‘high impact’ PAs as key sites for future focus on climate change impacts 
on biodiversity. However, due to the great uncertainty in end-of-century projections, we encourage 
conservation planning decisions to be based on early- (and, perhaps, mid-) century impact 
projections. This will reduce potential errors arising from adaptive management based on end of 
century projections with high uncertainty, and will maximise the likelihood of success of early 
intervention opportunities for which we have greater confidence. 
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Annex 1: Excluded species  

 
List of species excluded based on the criteria described in the methods sections. 

 

Species (binomial) Taxonomic group Red list category 

Alexteroon jynx Amphibian CR 

Amietophrynus cristiglans Amphibian DD 

Amietophrynus perreti Amphibian VU 

Arthroleptis brevipes Amphibian DD 

Arthroleptis crusculum Amphibian EN 

Arthroleptis krokosua Amphibian EN 

Arthroleptis langeri Amphibian DD 

Arthroleptis nimbaensis Amphibian DD 

Astylosternus occidentalis Amphibian LC 

Cardioglossa alsco Amphibian CR 

Cardioglossa nigromaculata Amphibian NT 

Cardioglossa schioetzi Amphibian EN 

Crotaphatrema tchabalmbaboensis Amphibian DD 

Didynamipus sjostedti Amphibian EN 

Geotrypetes angeli Amphibian DD 

Geotrypetes pseudoangeli Amphibian DD 

Hylarana fonensis Amphibian DD 

Hyperolius bobirensis Amphibian EN 

Hyperolius chlorosteus Amphibian NT 

Hyperolius nimbae Amphibian EN 

Hyperolius occidentalis Amphibian LC 

Hyperolius soror Amphibian DD 

Hyperolius sylvaticus Amphibian LC 

Hyperolius viridigulosus Amphibian VU 

Hyperolius zonatus Amphibian NT 

Kassina wazae Amphibian DD 

Leptopelis bequaerti Amphibian DD 

Leptopelis macrotis Amphibian NT 

Leptopelis occidentalis Amphibian NT 

Leptopelis rufus Amphibian LC 

Leptopelis spiritusnoctis Amphibian LC 

Nimbaphrynoides liberiensis Amphibian CR 

Nimbaphrynoides occidentalis Amphibian CR 

Petropedetes cameronensis Amphibian NT 

Petropedetes johnstoni Amphibian NT 

Petropedetes newtoni Amphibian LC 

Phrynobatrachus elberti Amphibian DD 

Phrynobatrachus intermedius Amphibian CR 

Phrynobatrachus nanus Amphibian DD 



Durham University. SDM with dynamic climate. 

 35 

Phrynobatrachus pintoi Amphibian DD 

Phrynobatrachus plicatus Amphibian LC 

Phrynobatrachus pygmaeus Amphibian DD 

Phrynobatrachus sandersoni Amphibian LC 

Pseudhymenochirus merlini Amphibian LC 

Ptychadena arnei Amphibian DD 

Ptychadena retropunctata Amphibian DD 

Tomopterna milletihorsini Amphibian DD 

Trichobatrachus robustus Amphibian LC 

Werneria preussi Amphibian EN 

Werneria tandyi Amphibian EN 

Accipiter badius Bird LC 

Acrocephalus scirpaceus Bird LC 

Anthus richardi Bird LC 

Aquila chrysaetos Bird LC 

Ardea cinerea Bird LC 

Ardea purpurea Bird LC 

Athene noctua Bird LC 

Bubulcus ibis Bird LC 

Buteo rufinus Bird LC 

Butorides striata Bird LC 

Calandrella brachydactyla Bird LC 

Casmerodius albus Bird LC 

Ceryle rudis Bird LC 

Charadrius alexandrinus Bird LC 

Ciconia ciconia Bird LC 

Cisticola juncidis Bird LC 

Columba livia Bird LC 

Coturnix chinensis Bird LC 

Dendrocygna bicolor Bird LC 

Dendrocygna viduata Bird LC 

Egretta garzetta Bird LC 

Elanus caeruleus Bird LC 

Falco pelegrinoides Bird LC 

Falco peregrinus Bird LC 

Falco tinnunculus Bird LC 

Galerida cristata Bird LC 

Gallinula chloropus Bird LC 

Glareola pratincola Bird LC 

Himantopus himantopus Bird LC 

Hirundo daurica Bird LC 

Hirundo smithii Bird LC 

Ixobrychus minutus Bird LC 

Lanius excubitor Bird LC 

Malimbus ballmanni Bird EN 

Malimbus ibadanensis Bird EN 

Merops orientalis Bird LC 
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Merops persicus Bird LC 

Mesophoyx intermedia Bird LC 

Milvus migrans Bird LC 

Monticola solitarius Bird LC 

Motacilla flava Bird LC 

Neophron percnopterus Bird EN 

Nycticorax nycticorax Bird LC 

Oenanthe deserti Bird LC 

Passer domesticus Bird LC 

Platalea leucorodia Bird LC 

Porphyrio porphyrio Bird LC 

Psittacula krameri Bird LC 

Pterocles exustus Bird LC 

Riparia paludicola Bird LC 

Rostratula benghalensis Bird LC 

Salpornis spilonotus Bird LC 

Sarkidiornis melanotos Bird LC 

Saxicola torquatus Bird LC 

Streptopelia turtur Bird LC 

Sylvia nana Bird LC 

Tachybaptus ruficollis Bird LC 

Tadorna ferruginea Bird LC 

Turnix sylvaticus Bird LC 

Tyto alba Bird LC 

Upupa epops Bird LC 

Asellia tridens Mammal LC 

Canis aureus Mammal LC 

Caracal caracal Mammal LC 

Cephalophus jentinki Mammal EN 

Cephalophus zebra Mammal VU 

Cercocebus torquatus Mammal VU 

Cercopithecus erythrogaster Mammal VU 

Cercopithecus erythrotis Mammal VU 

Cercopithecus preussi Mammal EN 

Crocidura buettikoferi Mammal NT 

Crocidura longipes Mammal DD 

Crocidura virgata Mammal DD 

Eptesicus platyops Mammal DD 

Euoticus pallidus Mammal LC 

Felis margarita Mammal NT 

Felis silvestris Mammal LC 

Genetta cristata Mammal VU 

Genetta poensis Mammal DD 

Gerbillus nanus Mammal LC 

Gerbillus nigeriae Mammal LC 

Glauconycteris superba Mammal LC 

Hipposideros lamottei Mammal CR 
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Hyaena hyaena Mammal NT 

Leimacomys buettneri Mammal DD 

Meriones crassus Mammal LC 

Meriones libycus Mammal LC 

Miniopterus schreibersii Mammal NT 

Monachus monachus Mammal CR 

Myosorex rumpii Mammal EN 

Myotis morrisi Mammal DD 

Panthera pardus Mammal NT 

Pipistrellus eisentrauti Mammal DD 

Rhinolophus ziama Mammal EN 

Rhinopoma microphyllum Mammal LC 

Steatomys jacksoni Mammal DD 

Sylvisorex pluvialis Mammal DD 

Taphozous nudiventris Mammal LC 

Trichechus senegalensis Mammal VU 
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Annex 2: Country Level Species Turnover Maps 
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The Gambia 
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Togo 
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Sierra Leone 
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Annex 3: Change in climate suitability across the network for red 
listed species 

 
This table presents for each taxonomic group the species that are classified as either critical (CR), 
endangered (EN), vulnerable (VU) or data deficient (DD) and their categorical change in climate 
suitability across the region’s PA network. Species are classified as ‘highly likely’ to gain (G) or lose (L) 
climate suitability where the 95% CI show a unanimous classification; otherwise, species are classified 
as showing ‘no consensus’ (NC) (see methods and results sections for full details). 
 

      Time period 

Species (binomial) 
Red List 
category 

Taxonomic 
Group 

2011-
2040 

2041-
2070 

2070-
2100 

Agelastes meleagrides VU Bird NC NC NC 

Apus sladeniae DD Bird L L NC 

Balearica pavonina VU Bird NC NC NC 

Bycanistes cylindricus VU Bird NC NC L 

Campephaga lobata VU Bird NC NC NC 

Campephaga oriolina DD Bird L NC NC 

Ceratogymna elata VU Bird L NC L 

Circaetus beaudouini VU Bird NC NC NC 

Coccycolius iris DD Bird NC L NC 

Criniger olivaceus VU Bird L L L 

Estrilda poliopareia VU Bird NC NC NC 

Gyps africanus EN Bird NC NC NC 

Gyps rueppellii EN Bird NC NC NC 

Jubula lettii DD Bird L L L 

Melaenornis annamarulae VU Bird NC NC NC 

Melignomon eisentrauti DD Bird NC NC NC 

Muscicapa tessmanni DD Bird L L L 

Necrosyrtes monachus EN Bird NC NC NC 

Picathartes gymnocephalus VU Bird NC NC L 

Picathartes oreas VU Bird L L L 

Ploceus bannermani VU Bird L L L 

Prinia leontica VU Bird L L NC 

Psittacus erithacus VU Bird L L NC 

Psittacus timneh VU Bird L NC NC 

Sagittarius serpentarius VU Bird NC NC NC 

Scotopelia ussheri VU Bird NC NC NC 

Torgos tracheliotos VU Bird NC NC NC 

Trigonoceps occipitalis VU Bird NC NC NC 

Balaeniceps rex VU Bird NC NC NC 

Acinonyx jubatus VU Mammal NC NC NC 

Addax nasomaculatus CR Mammal L NC NC 
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Aethomys stannarius DD Mammal L NC NC 

Ammotragus lervia VU Mammal NC NC NC 

Anomalurus pelii DD Mammal NC NC NC 

Cercocebus atys VU Mammal NC NC L 

Cercopithecus diana VU Mammal NC NC L 

Cercopithecus sclateri VU Mammal NC NC NC 

Colobus polykomos VU Mammal L L L 

Colobus vellerosus VU Mammal NC NC NC 

Crocidura planiceps DD Mammal L NC NC 

Crocidura tarfayensis DD Mammal L L L 

Cryptomys foxi DD Mammal L L NC 

Dasymys foxi DD Mammal L L L 

Eudorcas rufifrons VU Mammal NC NC NC 

Felovia vae DD Mammal NC NC NC 

Funisciurus substriatus DD Mammal L L L 

Gazella leptoceros EN Mammal NC NC NC 

Genetta johnstoni VU Mammal L L L 

Gerbillus nancillus DD Mammal L L L 

Gorilla gorilla CR Mammal L L NC 

Grammomys buntingi DD Mammal L L L 

Graphiurus crassicaudatus DD Mammal L L L 

Heliosciurus punctatus DD Mammal NC NC L 

Hippopotamus amphibius VU Mammal NC NC NC 

Hylomyscus baeri EN Mammal NC NC NC 

Kerivoula cuprosa DD Mammal NC NC NC 

Liberiictis kuhni VU Mammal L NC NC 

Loxodonta africana VU Mammal NC NC NC 

Lycaon pictus EN Mammal NC NC NC 

Mandrillus leucophaeus EN Mammal L L L 

Micropotamogale lamottei EN Mammal L L L 

Myopterus daubentonii DD Mammal NC NC NC 

Nanger dama CR Mammal NC NC NC 

Nycteris major DD Mammal L L L 

Otomys occidentalis VU Mammal L L L 

Pan troglodytes EN Mammal L L L 

Panthera leo VU Mammal NC NC NC 

Paraxerus cooperi DD Mammal NC NC NC 

Pipistrellus inexspectatus DD Mammal L L L 

Poiana leightoni DD Mammal NC NC NC 

Praomys obscurus EN Mammal NC NC L 

Procolobus badius EN Mammal L L L 

Procolobus pennantii CR Mammal NC NC NC 

Procolobus preussi CR Mammal L NC NC 

Protoxerus aubinnii DD Mammal NC NC NC 

Rhinolophus guineensis VU Mammal L L L 

Rhinolophus maclaudi EN Mammal NC L NC 

Scotoecus albofuscus DD Mammal L L L 
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Scotophilus nucella DD Mammal NC NC NC 

Sylvisorex camerunensis VU Mammal L L L 

Tadarida russata DD Mammal NC NC NC 

Tadarida trevori DD Mammal L L L 

Crocidura manengubae EN Mammal L L L 

Crocidura picea EN Mammal NC L L 

Glauconycteris curryae DD Mammal NC NC NC 

Hipposideros curtus VU Mammal L L L 

Hybomys badius EN Mammal L L L 

Nycteris parisii DD Mammal L L L 

Pipistrellus flavescens DD Mammal NC NC NC 

Pipistrellus musciculus DD Mammal NC NC NC 

Cardioglossa melanogaster EN Amphibian L L L 

Cardioglossa pulchra EN Amphibian L L L 

Conraua alleni VU Amphibian L L L 

Conraua derooi CR Amphibian L L NC 

Conraua robusta VU Amphibian L L L 

Hylarana asperrima EN Amphibian L L NC 

Hylarana occidentalis EN Amphibian L L NC 

Hyperolius riggenbachi VU Amphibian L L L 

Hyperolius torrentis EN Amphibian L L L 

Kassina arboricola VU Amphibian NC NC NC 

Leptodactylodon bicolor VU Amphibian L L L 

Leptodactylodon polyacanthus VU Amphibian L L L 

Phrynobatrachus annulatus EN Amphibian L L NC 

Phrynobatrachus cricogaster VU Amphibian L L L 

Phrynobatrachus steindachneri VU Amphibian L L L 

Phrynobatrachus villiersi VU Amphibian L L L 

Ptychadena pujoli DD Amphibian L L L 

Ptychadena submascareniensis DD Amphibian L L L 

Wolterstorffina parvipalmata VU Amphibian L L L 

Amietophrynus djohongensis EN Amphibian NC L NC 

Amietophrynus villiersi EN Amphibian L L L 

Astylosternus diadematus VU Amphibian L L L 

Astylosternus fallax EN Amphibian L L L 

Astylosternus laurenti EN Amphibian L L L 

Astylosternus rheophilus VU Amphibian L L L 

Cardioglossa venusta EN Amphibian NC NC NC 

Hylarana longipes VU Amphibian NC NC L 

Idiocranium russeli DD Amphibian L L L 

Leptodactylodon perreti EN Amphibian L L L 

Petropedetes perreti EN Amphibian L L L 
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Annex 4: ‘High priority’ sites identified for two or three taxonomic 
groups 
 
Protected areas (in alphabetical order) identified as being consistently ‘high priority’, measured as 
those sites with projected species turnovers in the upper quartile (≥95% certainty level). See methods 
and results for full details. 
 

Name Country Designation 

A
m

p
h

ib
ian

s 

B
ird

s 

M
am

m
als 

Taxono-
mic 
groups 
(n) 

Time 
period 

Abasumba GHA Forest Reserve 1 1 0 2 2011-2040 

Abeanou CIV Classified Forest 0 1 1 2 2011-2040 

Abouderessou CIV Classified Forest 1 1 1 3 2011-2040 

Adzope CIV Classified Forest 1 1 0 2 2011-2040 

Agbo CIV Classified Forest 1 1 1 3 2011-2040 

Ahirasu Blocks I & 
II 

GHA Forest Reserve 1 1 0 2 2011-2040 

Ahua CIV Classified Forest 1 1 1 3 2011-2040 

Akrobong GHA Forest Reserve 0 1 1 2 2011-2040 

Amou-Mono TGO Forest Reserve 1 1 1 3 2011-2040 

Ananguie CIV Classified Forest 1 1 0 2 2011-2040 

Anhwiaso East GHA Forest Reserve 1 1 0 2 2011-2040 

Arrah CIV Classified Forest 0 1 1 2 2011-2040 

Banie GIN Classified Forest 1 1 1 3 2011-2040 

Besso CIV Classified Forest 1 1 0 2 2011-2040 

Bodio Doubele CIV Classified Forest 1 1 1 3 2011-2040 

Boli CIV Classified Forest 0 1 1 2 2011-2040 

Bong Mountain LBR National Park 1 0 1 2 2011-2040 

Bongouanou CIV Classified Forest 1 1 1 3 2011-2040 

Bonsa Ben GHA Forest Reserve 1 1 0 2 2011-2040 

Classified Forest 
Name Unknown 
CIV No22 

CIV Classified Forest 0 1 1 2 2011-2040 

Classified Forest 
Name Unknown 
CIV No30 

CIV Classified Forest 1 0 1 2 2011-2040 

Classified Forest 
Name Unknown 
CIV No31 

CIV Classified Forest 1 1 1 3 2011-2040 

Classified Forest 
Name Unknown 
CIV No36 

CIV Classified Forest 0 1 1 2 2011-2040 

Classified Forest 
Name Unknown 
CIV No45 

CIV Classified Forest 1 0 1 2 2011-2040 
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Classified Forest 
Name Unknown 
CIV No46 

CIV Classified Forest 1 1 0 2 2011-2040 

Classified Forest 
Name Unknown 
CIV No49 

CIV Classified Forest 1 1 1 3 2011-2040 

Classified Forest 
Name Unknown 
CIV No50 

CIV Classified Forest 1 1 0 2 2011-2040 

Classified Forest 
Name Unknown 
CIV No51 

CIV Classified Forest 1 1 1 3 2011-2040 

Classified Forest 
Name Unknown 
CIV No55 

CIV Classified Forest 0 1 1 2 2011-2040 

Classified Forest 
Name Unknown 
CIV No56 

CIV Classified Forest 1 1 1 3 2011-2040 

Classified Forest 
Name Unknown 
CIV No57 

CIV Classified Forest 1 1 1 3 2011-2040 

Classified Forest 
Name Unknown 
CIV No64 

CIV Classified Forest 1 1 1 3 2011-2040 

Classified Forest 
Name Unknown 
CIV No72 

CIV Classified Forest 1 1 0 2 2011-2040 

Dan BEN Classified Forest 1 1 0 2 2011-2040 

De CIV Classified Forest 1 1 1 3 2011-2040 

Disue River GHA Forest Reserve 1 1 0 2 2011-2040 

Divo CIV Botanical Reserve 0 1 1 2 2011-2040 

Draw River GHA Forest Reserve 1 0 1 2 2011-2040 

Ebrinenou CIV Classified Forest 1 1 1 3 2011-2040 

Fada Archei TCD Faunal Reserve 0 1 1 2 2011-2040 

Gboi Hills SLE Forest Reserve 1 1 0 2 2011-2040 

Gorke CIV Classified Forest 1 1 0 2 2011-2040 

Goudi CIV Classified Forest 1 0 1 2 2011-2040 

Inekar MLI Hunting Area 0 1 1 2 2011-2040 

Jeni River GHA Forest Reserve 1 1 0 2 2011-2040 

Kambui Hills and 
Extensions 

SLE Forest Reserve 1 0 1 2 2011-2040 

Kassa CIV Classified Forest 1 1 0 2 2011-2040 

Kavi CIV Classified Forest 1 1 0 2 2011-2040 

Kravassou CIV Classified Forest 1 1 1 3 2011-2040 

Lakes of Ounianga TCD World Heritage Site 1 1 1 3 2011-2040 

Mando CIV Classified Forest 1 1 1 3 2011-2040 

Marahoue CIV Classified Forest 1 1 0 2 2011-2040 

Matiemba CIV Classified Forest 1 1 1 3 2011-2040 

Mkar NGA Forest Reserve 1 1 0 2 2011-2040 

Monogaga CIV Classified Forest 1 1 1 3 2011-2040 
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Mopri CIV Classified Forest 1 1 0 2 2011-2040 

Ndokouassikro CIV Classified Forest 1 1 1 3 2011-2040 

Oasis du Kawar NER 

Ramsar Site, 
Wetland of 
International 
Importance 

1 1 1 3 2011-2040 

Obotumfo Hills GHA Forest Reserve 1 1 1 3 2011-2040 

Obrachere 1 GHA Forest Reserve 1 1 0 2 2011-2040 

Obrachere GHA Forest Reserve 1 1 0 2 2011-2040 

Offumpo CIV Classified Forest 1 1 1 3 2011-2040 

Opimbo GHA Forest Reserve 1 1 0 2 2011-2040 

Osomari NGA Forest Reserve 1 0 1 2 2011-2040 

Otamiri NGA Forest Reserve 1 0 1 2 2011-2040 

Owabi GHA 

Ramsar Site, 
Wetland of 
International 
Importance 

1 1 0 2 2011-2040 

Owabi GHA Wildlife Sanctuary 1 1 0 2 2011-2040 

Plaine des 
Elephants 

CIV Classified Forest 0 1 1 2 2011-2040 

Sab-Sabre SEN Not Reported 0 1 1 2 2011-2040 

Seguela CIV Classified Forest 1 1 1 3 2011-2040 

Seguie CIV Classified Forest 1 1 0 2 2011-2040 

Taabo CIV Classified Forest 1 1 0 2 2011-2040 

Tchilla-Monota TGO Forest Reserve 1 1 0 2 2011-2040 

Tete CIV Classified Forest 0 1 1 2 2011-2040 

Tin Achara MLI Hunting Area 0 1 1 2 2011-2040 

Tiwai Island 
Sanctuary 

SLE 
Game Sanctuary / 
Non-hunting Forest 
Reserve 

1 1 1 3 2011-2040 

Ukpam NGA Forest Reserve 1 0 1 2 2011-2040 

Vavoua CIV Classified Forest 0 1 1 2 2011-2040 

Yandev NGA Forest Reserve 0 1 1 2 2011-2040 

Yoyo River GHA Forest Reserve 1 1 0 2 2011-2040 

Abasumba GHA Forest Reserve 1 1 1 3 2041-2070 

Abouderessou CIV Classified Forest 1 0 1 2 2041-2070 

Ahirasu Blocks I & 
II 

GHA Forest Reserve 1 1 0 2 2041-2070 

Ahua CIV Classified Forest 1 0 1 2 2041-2070 

Akrobong GHA Forest Reserve 1 1 0 2 2041-2070 

Banie GIN Classified Forest 1 1 0 2 2041-2070 

Classified Forest 
Name Unknown 
CIV No63 

CIV Classified Forest 1 1 0 2 2041-2070 

Classified Forest 
Name Unknown 
CIV No64 

CIV Classified Forest 1 1 1 3 2041-2070 

Classified Forest 
Name Unknown 
CIV No67 

CIV Classified Forest 0 1 1 2 2041-2070 
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Dechidan Stream GHA Forest Reserve 1 1 1 3 2041-2070 

Kalakpa GHA 
Game Production 
Reserve 

1 1 0 2 2041-2070 

Kassa CIV Classified Forest 0 1 1 2 2041-2070 

Kavi CIV Classified Forest 0 1 1 2 2041-2070 

Lakes of Ounianga TCD World Heritage Site 1 1 1 3 2041-2070 

Monogaga CIV Classified Forest 1 1 1 3 2041-2070 

Mount Nimba CIV National Reserve 1 1 1 3 2041-2070 

Mt De CIV Classified Forest 1 1 1 3 2041-2070 

Ndokouassikro CIV Classified Forest 1 0 1 2 2041-2070 

Nimba West LBR National Park 0 1 1 2 2041-2070 

Niouniourou CIV Classified Forest 0 1 1 2 2041-2070 

Oasis du Kawar NER 

Ramsar Site, 
Wetland of 
International 
Importance 

1 1 0 2 2041-2070 

Obotumfo Hills GHA Forest Reserve 1 1 0 2 2041-2070 

Obrachere GHA Forest Reserve 1 1 0 2 2041-2070 

Opimbo GHA Forest Reserve 1 1 0 2 2041-2070 

Wologizi LBR National Park 1 1 0 2 2041-2070 

Yoyo River GHA Forest Reserve 1 1 0 2 2041-2070 

Zakpaberi CIV Classified Forest 1 0 1 2 2041-2070 

Banie GIN Classified Forest 1 1 1 3 2071-2100 

Classified Forest 
Name Unknown 
CIV No72 

CIV Classified Forest 1 1 0 2 2071-2100 

Dam Makama NGA Forest Reserve 1 1 0 2 2071-2100 

Kavi CIV Classified Forest 1 1 0 2 2071-2100 

Kpo Mountains LBR National Park 1 1 0 2 2071-2100 

Zakpaberi CIV Classified Forest 1 0 1 2 2071-2100 

 


